

A 772µJ/frame ImageNet Feature Extractor Accelerator on HD Images at 30FPS

Ivan Miro-Panades, Vincent Lorrain, Lilian Billod, Inna Kucher, Vincent Templier, Sylvain Choisnet, Nermine Ali, Baptiste Rossigneux, Olivier Bichler, Alexandre Valentian

APCCAS, November 7-9, 2024

Outline

- Introduction and Challenges
- NeuroCorgi
 - Architecture
 - Computing modes
 - Semantic segmentation use case
- NeuroCorgi ImageNet measures
- Conclusion

Introduction

- Al is everywhere !
- Embedding AI models in edge devices is challenging
- Advance node technology required to meet the target energy efficiency
 - However, design and fabrication cost are too high on these advanced nodes
- Foundation Models are emerging
 - Trained with a massive amount of data
 - Adaptation (transfer learning) to multiple tasks
 - The backbone remains fixed while last layers are tuned

Source: Yunsup Lee, Andrew Waterman, VLSI 2020

Source: https://arxiv.org/abs/2108.07258

Facing challenges on edge devices

Low power operation

- Battery powered devices
- Energy efficiency is an imperative

High frame rate

Detect and track fast moving objects

Low processing latency

Batch size of 1 become mandatory

High resolution images

Moving from 224x224 images to HD images

Occam's razor

- Should I always use a large and energy-consuming model for all inferences?
 - Probably not!
 - For 95% of the cases, a low-energy expert model may obtain the same results
 - Combine different models to manage accuracy and energy efficiency tradeoff

Outline

Introduction and Challenges

NeuroCorgi

- Architecture
- Computing modes
- Semantic segmentation use case
- NeuroCorgi ImageNet measures
- Conclusion

NeuroCorgi introduction

- A high energy efficiency Feature Extractor Accelerator (FEA)
- Supporting up-to HD images at 30FPS with reduced processing latency
- By integrating an external Programmable AI accelerator, the system can compute specific AI tasks based on FEA results
 - The Programmable AI accelerator is not included in current NeuroCorgi circuit
- As in Foundation models, the FEA part is pre-trained and fixed at design-time
- FEA uses a lightweight backbone to obtain high energy efficiency and low latency

NeuroCorgi introduction

NeuroCorgi comes with a set of tools to train and quantize a model and generate a new RTL

NeuroCorgi circuit

No external memory for activations and weights Only Video IN and Feature OUT

Network topology

- NeuroCorgi backbone uses MobileNet v1 topology
 - Tradeoff between network complexity and operations per inference
 - Uses Depth-Wise (DW) and Point-Wise (PW) convolutions to reduce the computing complexity
 - Lower MACs per images
 - Lower energy per inference

Depth-wise (DW) + Point-wise (PW) convolutions

- Leverage on fixed topology and fixed weights
 - Fixed topology optimizes the buffering and the inter-layer communication throughput
 - Fixed weights allows to fix within the ASIC the weight values
 - A ROM of weights can be optimized at design time

S. Bianco, "Benchmark Analysis of Representative Deep Neural Network Architectures,"

NeuroCorgi layers

NeuroCorgi computing approach

Compute modes

- Streaming architecture with specialized compute modules
- Four computation modes for convolutions

- DN and LineBuffer (LB) approaches
- 3D and Depth-Wise(DW) Convolutions
- Stride and padding supported
- Optimized streaming interfaces
 - FIFO-less, only elastic registers
 - Clock frequency adapted to the layer performance

DN Convolution

Input tensor is used to compute partial accumulations

- Area efficient architecture
 - Very few registers and low wire routing
 - No input FIFO. Inputs are directly used
 - ACC data in SRAM
- Energy efficiency
 - High energy efficiency thanks to MCM
 - But high number of ACC operations due to partial accumulations

LB Convolution

- Store input tensor and then compute kernel in parallel
- Energy efficient architecture
 - LB is more energy efficient than DN
 - Convolution is computed as parallel as possible
 - Input data is reused on multiple convolutions
 - Tradeoff between convolution computation and input reuse
 - Optimized MCM increases the energy efficiency
- Line buffer requires N-1 lines of input features
 - E.g. 2 lines of input activations on a 3x3 convolution
 - Uses SRAM memory for density and registers for parallel read

Compute modes selection

	Lavor	Compute	
	Layer	mode	
	1: Conv1		1
	2: Conv1 3x3 dw		
	2: Conv1_3x3_uw 3: Conv1_1x1		
	1: Conv2 2x2 dw		
	4. CONV2_3X3_UW		
	$J. CONV2_IXI$		
	0. CONV3_3X3_UW		
	P: Conv/ 2x2 dw		
	0. Conv4_3x3_uw		
	9. CONV4_1X1		
	10. CONV5_3X3_UW		
	11. CONV5_1X1		
	12. CONV6_3X3_UW		
	13: CONVO_1X1		
	14: CONV7_1_3X3_0W		
	15. CONV7_1_1X1 16. Comv7_2_2x2_dw		
	10: CONV7_2_3X3_UW		
	17: CONV7_2_1X1		
	10. CONV7_3_3X3_UW		
	19: CONV7_3_1X1		
	20: CONV7_4_3X3_0W		•
	$21: CONV7_4_1X1$		_
\Rightarrow	22: CONV7_5_3X3_UW		•
	23. CONV/_3_IXI		
	24. COIIVO_3X3_UW		
	20: CONV9_3X3_0W		-
	27: CONV9_1X1	LP COUV	

Number of registers using LB or DN approaches in function of the layer

- LB is more energy efficient than DN
- However LB suffers from wire congestion on 3D and DW convolutions
 - For layers with many channels, the number of registers is too high
- Routing congestion is not an issue on point-wise layers

Quantization results on ImageNet

MobileNet v1 topology on ImageNet

- Floating point model (original paper)
 - Accuracy: 70.6%
- 4bit quantized model (first layer on 8bits)
 - Accuracy: 70.54%
 - NeuroCorgi embeds this model

Semantic segmentation use case

NeuroCorgi implementation variants

 SPI_slave

 FIF0_VC

 MobileNet v1)

ImageNet database Last Layer: SRAM ImageNet database Last Layer: NVM

Classification and Semantic segmentation tasks

COCO database Last Layer: SRAM

Object detection tasks

Outline

- Introduction and Challenges
- NeuroCorgi
 - Architecture
 - Computing modes
 - Semantic segmentation use case
- NeuroCorgi ImageNet measures
- Conclusion

NeuroCorgi ImageNet

1: Conv1			
2: Conv1	_3x3_dw		
3: Conv1	_1x1		
4: Conv2	_3x3_dw		
5: Conv2	_1x1		
6: Conv3	_3x3_dw	п	
7: Conv3	_1x1		
8: Conv4	_3x3_dw	- 1	Technol
9: Conv4	_1x1	- H	Technol
10: Conv5_	_3x3_dw		Chip are
11: Conv5_	_1x1		FEA are
12: Conv6_	_3x3_dw	- H	
13: Conv6_	_1x1		# multip
14: Conv7_	_1_3x3_dw	Г	# SRAM
15: Conv7_	_1_1x1	- H	
16: Conv7_	_2_3x3_dw		SRAM r
17: Conv7_	_2_1x1		Main clo
18: Conv7_	_3_3x3_dw	- H	
19: Conv7_	_3_1x1		AI mode
20: Conv7_	_4_3x3_dw		Training
21: Conv7_	_4_1x1	-	
22: Conv7_	_5_3x3_dw		Batch si
23: Conv7_	_5_1x1	_	
24: Conv8	_3x3_dw		
25: Conv8	_1x1		
26: Conv9	_3x3_dw		

27: Conv9_1x1

Chip summary				
Technology	GF 22FDX			
Chip area	7.86mm ²			
FEA area	4.45mm ²			
# multipliers	42k			
# SRAM memories	186			
SRAM memory	1.1MB			
Main clock	59MHz			
AI model	MobileNet v1			
Training dataset	ImageNet			
Batch size	1			

NeuroCorgi ImageNet - Energy efficiency

45

On HD images (1280x720) at 30FPS, 0.76V

- Main clock 59MHz
- 23.2mW @ 30FPS
- 772µJ/frame
- 837pJ/pixel/frame
- Leakage 0.96%: 224µW

On 224x224 images at 0.76V

- Main clock 59MHz
- 25.7mW @ 605 FPS
- 42.4µJ/frame
- 846pJ/pixel/frame
- Leakage 0.88%: 224µW

900

@30FPS

23

Processing latency

On HD images @ 59MHz

Output	Latency (µs)	% of image		
Conv3_1x1	391	1.17%		
Conv5_1x1	916	2.75%		
Conv7_5_1x1	4790	14.37%		
Conv9_1x1	6902	20.71%		

On 224x224 images @ 59MHz

Output	Latency (µs)	% of image			
Conv3_1x1	69	4.06%			
Conv5_1x1	166	9.78%			
Conv7_5_1x1	893	52.60%			
Conv9_1x1	1288	75.86%			

- The first features are generated with only 21% of the input image
- 6.9ms latency on HD mages at 30FPS

Comparison with SoA

			ISSCC'20 Y. Jiao et al.	JSSC'23 JS. Park et al.	JSSC'23 DIANA	JSSC'24 Marsellus	JSSC'24 DynaPlasia	ISSCC'22 Hiddenite	This work NeuroCorgi
Technology		12nm	4nm	22nm	22nm FDX	28nm	40nm	22nm FDX	
Application		Server	Mobile	Edge	AI-IoT	Embedded	Embedded	Embedded	
Area (mm²)		709 (chip)	4.74 (core)	3.3 (core)	18.7 (chip) 2.42 (core)	20.25 (chip)	9 (chip) 4.36 (core)	7.86 (chip) 4.45 (FEA)	
Programmability		Programmable	Programmable	Programmable	Programmable	Programmable	Configurable	Fixed	
Power consumption (mW)		25W – 276W	381 – 5133	_	12.8 – 123	261	85.4 – 534.7	5 – 37	
e case	Training dataset		ImageNet	ImageNet	ImageNet	ImageNet	ImageNet	ImageNet	ImageNet
	AI model		ResNet50 v1	MobileNet TPU	ResNet18	ResNet18	ResNet18	ResNet50	MobileNet v1
	Precision (bits)		8	8	Analog + digital	RBE 4x4b	9w, 8a	ternary(w), 8a	4w, 4a
	Top-1 accuracy (%)		74.93	_	64.1	68.5	70.4	70.09	70.42
sn	Inferences/second (FPS)	224x224	78563	3433	277	20.8	776 ^γ	169.7 ^α	788
ы Т		1280x720	_	_	_	_	_	_	39
Ž	FEA latency (ms)	224x224	0.2 ^{βδ}	0.29 ^δ	3.6 ^δ	48 ^δ	1.29 ^{γδ}	5.92 ^{αδ}	1.23
Image		1280x720	_	_	-	_	-	_	6.90
	TOPS/W	224x224	4.14	11.59	5.52 ^α	5.83	10.8 ^γ	16 ^α	30.9 [¢]
		1280x720	-	-	_	-	—	—	30.9 [¢]
	Best FEA Energy/inference (µJ/frame)	224x224	2000 ⁸	340 ⁸	659 ^{αδ}	557 ^δ	336 ^{γδ}	503 ^{αδ}	36.7
		1280x720	_	_	_	_	_	-	676

1 MAC = 2 Ops. Zero skipping included as MACs αWithout considering off-chip memory accesses. ^βLatency reported on Inception v3. ^φOnly feature extraction (no FC layer) ^δEstimated feature extraction part. Assuming 1Conv OP = 1FC OP for latency and energy. FC is 0.18% (0.03%) of total MACs/frame on 224x224 images for MobileNet v1 (ResNet18) ^γPower & latency off-chip weight loading from external DRAM / external host CPU / on-chip network / on-chip memory access / refresh are not included.

>9.2× better energy per inference at 224x224 images with similar accuracy

1.9x

9.2x

Outline

- Introduction and Challenges
- NeuroCorgi
 - Architecture
 - Computing modes
 - Semantic segmentation use case
- NeuroCorgi ImageNet measures
- Conclusion

Conclusion

- NeuroCorgi is a Feature Extractor Accelerator targeting EdgeAI devices
- The streaming architecture leverages on fixed topology and fixed weights to achieve high energy efficiency
- Transfer learning technique is used to address multiple AI tasks
- An implementation flow from application to circuit design is proposed
- NeuroCorgi has been fabricated in three different variants
- ImageNet SRAM variant show outstanding performances
 - 23.2mW (772µJ/frame) with HD images at 30FPS
 - 1.5mW with 224x224 images at 30FPS
 - Processing latency of 6.9ms with HD at 30FPS
 - At least 9.2× energy efficiency over prior ASICs

Acknowledgements

This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 876925. The JU receives support from the European Union's Horizon 2020 research and innovation program and France, Belgium, Germany, Netherlands, Portugal, Spain, Switzerland

This project has received funding from PREVAIL project under grant agreement No 101083307 (DIGITAL-2021-CLOUD-AI-01)

The authors would like to thank David Briand, Johannes Christian Thiele and Marc Duranton for their contribution