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Introduction

m Alis everywhere !
= Embedding Al models in edge devices is challenging

m Advance node technology required to meet the target
energy efficiency

m However, design and fabrication cost are too high on
these advanced nodes

m Foundation Models are emerging
m Trained with a massive amount of data
m Adaptation (transfer learning) to multiple tasks
m The backbone remains fixed while last layers are tuned
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Facing challenges on edge devices

Low power operation
= Battery powered devices
= Energy efficiency is an imperative

High frame rate
= Detect and track fast moving objects

Low processing latency
= Batch size of 1 become mandatory

High resolution images
= Moving from 224x224 images to HD images
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Occam's razor

= Should | always use a large and energy-consuming model for all inferences?
m Probably not!
m For 95% of the cases, a low-energy expert model may obtain the same results
m Combine different models to manage accuracy and energy efficiency tradeoff

Expert A
Usage: 95%

Expert B
Usage: 5%
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NeuroCorgi introduction

= A high energy efficiency Feature Extractor Accelerator (FEA)
= Supporting up-to HD images at 30FPS with reduced processing latency

= By integrating an external Programmable Al accelerator, the system can compute specific Al tasks based
on FEA results

m The Programmable Al accelerator is not included in current NeuroCorgi circuit
= As in Foundation models, the FEA part is pre-trained and fixed at design-time
= FEA uses a lightweight backbone to obtain high energy efficiency and low latency
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NeuroCorgi introduction
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applications [ Embedded Al computing platform ! V&, | Classification
SN | 1 “Person: 95%”
= == | HDimages ! ~ N P IIIEEEEN o e
we)! @30FPSs ! f |
A | | Feature Extractor Accelerator (FEA) |~ | Programmable |
I Fixed topology and weights d Al accelerator I-I—> | ' Semantic

: (NeuroCorgi_core) ,=>:: " Heads for different Al tasks Segmentation

: k J \\ /,

I -

| vo . /I

N e e e e e e e e e e = e e — =

"~.. Object detection
L 4
#..’
Leamni \ "
Za{ggt]g Optimization E \ ‘-_
database — i /' RTL (ASIC, FPGA, Emulator)
Quantization i
Modeling Aware Test dransfortn ' .
o model to INT S = CPP model (bit accurate)
Training i \
. Aidge (formerly N2D2) ! Corgi Builder | SDK model (for PyTorch)

______________________________________________________________

~

_________________

= NeuroCorgi comes with a set of tools to train and quantize a model and generate a new RTL



NeuroCorgi circuit

VDD _interface VDD_core Separate power domains
I I

Configuration =) SPI slave
NeuroCorgi_core

700Mbps FIFO_VC (F EA)

Video IN » MobileNet v1

Conv3 Convs Conv7_5 Conv9
1x1 1x1 1x1 1x1

FIFO _VC
2.5Gbps

Feature OUT

No external memory for activations and weights
Only Video IN and Feature OUT




Network topology

m NeuroCorgi backbone uses MobileNet v1 topology
m Tradeoff between network complexity and operations per inference

= Uses Depth-Wise (DW) and Point-Wise (PW) convolutions to reduce the s 3
computing complexit 0] wnnsgpe O @B
p g p y .SERESNH»?‘%’)«-101(32&:3::11:22 al;t-mue‘sxad)
m Lower MACs per images e B PR Q01 e 52
. ® .ResNet»SO ‘Caﬂe-ResNeHm VGG-19_ BN
m Lower energy per inference e
é BN-Ince:t;or; ;Iﬁ‘eesNebM VGG-13_BN
| I;em;lws‘jﬂ;—;:w—;—i ‘—‘? 0 MObﬁz‘s—?:Ha e V6G-19
f vsnum.e::;g 3 VGG-11
. . o . &
Standard convolution Depth-wise (DW) + Point-wise (PW) convolutions P 1M 5M 10M 50M 75M 100M  150M
. . . .AlexNel
m Leverage on fixed topology and fixed weights s . . . .
0 5 10 15 20 25
m Fixed topology optimizes the buffering and the inter-layer communication Operations [G-FLOPs]
throughput o _ | —
S. Bianco, "Benchmark Analysis of Representative Deep Neural Network Architectures,

m Fixed weights allows to fix within the ASIC the weight values
m A ROM of weights can be optimized at design time

= .



NeuroCorgi layers

| NeuroCorgi_core (FEA)

Inputs images
up to 1280x720
RGB @ 30FPS

Output feature map (div4)
320 x 180 x 128

Output feature map (div8)
160 x 90 x 256

Output feature map (div16)
80 x 45 x 512

Output feature map (div32)
40 x 23 x 1024

> 1: Conv1

2: Conv1_3x3_dw
3: Conv1_1x1
4: Conv2_3x3_dw

5: Conv2_1x1
6: Conv3_3x3_dw

| 7: Conv3_1x1

8: Conv4_3x3_dw
9: Conv4_1x1
10: Conv5_3x3_dw
11: Conv5_1x1
12: Conv6_3x3_dw
13: Conv6_1x1
14: Conv7_1_3x3_dw
15: Conv7_1_1x1
16: Conv7_2_3x3_dw
17: Conv7_2 1x1
18: Conv7_3_3x3_dw
19: Conv7_3_1x1
20: Conv7_4_3x3_dw
21: Conv7_4 1x1
22: Conv7_5_3x3_dw
23: Conv7_5 1x1
24: Conv8_3x3_dw
25: Conv8_1x1
26: Conv9_3x3_dw
27: Conv9_1x1

- e e o e o Em Em e o o e e e e e wm
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NeuroCorgi computing approach

/" Conventional DNN computation (layer-wise) )
@ ’
External @
\_ memory Input reading Weight reading Mult & Add Accumulate Output writing )
/NeuroCorgi computation )
& ’
Or
4 _
: Multi-constant multiplier (MCM)
Streammg_ g Optimized multipliers and add tree Reduc_:ed CLbRceE
Reduced input data at desian time No buffering between layers
Low storage area g Streaming approach
: Lower reading power =
Lower reading power : Lower writing power
Lower computing power
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Compute modes

Conv DW

LB
Conv DW

Layer N

Layer N+1

Streaming architecture with specialized
compute modules

Four computation modes for convolutions
m DN and LineBuffer (LB) approaches

m 3D and Depth-Wise(DW) Convolutions
Stride and padding supported

Optimized streaming interfaces

m FIFO-less, only elastic registers

m Clock frequency adapted to the layer
performance

13



DN Convolution

F

= Input tensor is used to compute partial accumulations
= Area efficient architecture

m Very few registers and low wire routing

m No input FIFO. Inputs are directly used
e o1 o s ACC data in SRAM
o Emf = Energy efficiency

m High energy efficiency thanks to MCM

m But high number of ACC operations due to partial

DN Adapter

ACC BIASES )
§ — — accumulations

ACC SRAM

Layer N+1

\_ DN Convolution
Layer N
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LB Convolution

Line buffer (LB)

Yanunnnnnnfs
~
~
~
~
~
~
~
~
~
~
~
~

] RS
Adder Tree

0

z(p)

Adder Tree

ACC BIASES
ACC regs

LB Convolution

Layer N

D
(0]
—

|_
—
()

o

5=

<<

Layer N+1

m Store input tensor and then compute kernel in parallel
m Energy efficient architecture

LB is more energy efficient than DN
Convolution is computed as parallel as possible
Input data is reused on multiple convolutions

Tradeoff between convolution computation and
input reuse

Optimized MCM increases the energy efficiency

m Line buffer requires N-1 lines of input features
m E.g. 2 lines of input activations on a 3x3 convolution
m Uses SRAM memory for density and registers for

parallel read
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Compute modes selection

Layer Compute N
mode S S
1: Conv1 .;_:m_ S 19072 % 5
2: Conv1_3x3_dw uqi E; ..%,
3: Conv1_1x1 TBConv =~ S >
=) 4 Conv2 3x3_dw S S S
5: Conv2_1x1 TBConv S S
6: Conv3_3x3_dw g 7 ~.§
7: Conv3_1x1 I!:‘ﬁ_ = D S
8: Conv4_3x3_dw Il ==
9: Conv4_1x1 1948
10: Conv5_3x3_dw LB Conv DW 512
11: Conv5_1x1 B Conv . 6 —
12: Conv6_3x3_dw DN Conv DW LB DN LB DN
13: Convé_1x1 4: Conv2_3x3_dw | 24: Conv8_3x3_dw
14: Conv7_1_3x3_dw [BI\Ke] VALY
15: Conv7_1_1x1 Number of registers using LB or DN
16: Conv7_2_3x3_dw Bl \ReLels\Am : :
e AL e approaches in function of the layer
18: Conv7_3_3x3_dw EBlN\ReLe]s\API
19: Conv7_3_1x1
20: Conv7_4 3x3 dw  LelKelIVARIY = LB is more energy efficient than DN
21: Conv7_4_1x1 _ _ _
22: Conv7_5_3x3_dw  |elNKe A} = However LB suffers from wire congestion on 3D and DW convolutions
23: Conv7_5_1x1 5 Conv ) . . .
=y |24: Conv8_3x3_dw _ m For layers with many channels, the number of registers is too high
25: Conv8_1x1 B Conv ; . . . . .
26: Conv9_3x3_dw = Routing congestion is not an issue on point-wise layers
TBConv

27: Conv9_1x1
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Quantization results on ImageNet

MobileNet v1 topology on ImageNet
m Floating point model (original paper)
m Accuracy: 70.6%

m 4bit quantized model (first layer on 8bits)
m Accuracy: 70.54%
m NeuroCorgi embeds this model

L ]
G ldg e https://projects.eclipse.org/projects/technology.aidge
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Semantic segmentation use case

4 N
. | Programmable
NeuroCorgi | Al accelerator
96.7% MAC/frame 3.3% MAC/frame
Image segmentation L/
Computing complexity: /

314M MAC/frame ! v v

3.3% of total MAC/frame Conv Conv Conv

mloU: 73.3% on Cityscapes 3x3 1x1 1x1

/

| x2
v
Conv Resize Conv Resize Conv Conv
3x3 x2 > 3x3 x2 > 3x3 nd Ix1 |77

\ Fine-tuned FPN /




NeuroCorgi implementation variants

/NeurOCorgi )
SPI_sl. SPI_sl SPI_sl
= NeuroCorgi = =
) core Last-layer o Last-layer e Last-layer
a2 (MobileNet v1) |[RSres i SR - SeS
FEO VC d ' '
\@ v
ImageNet database ImageNet database COCO database
Last Layer: SRAM Last Layer: NVM Last Layer: SRAM
Classification and Semantic segmentation tasks Object detection tasks

an

o e

19



Outline

m Introduction and Challenges
m NeuroCorgi
m Architecture
m Computing modes
m Semantic segmentation use case
= NeuroCorgi ImageNet measures
m Conclusion

20



NeuroCorgi ImageNet

2.8mm

v

= 2.8mm

: Convl ‘
|

: Convl_3x3_dw ‘
|

: Convl_1x1 ‘

: Conv3_3x3_dw

: Conv3_1x1

: Conv4_3x3_dw

: Conv4_1x1

: Conv5_3x3_dw

: Convb_1x1

: Conv6_3x3_dw

: Conv6_1x1

: Conv7_1_3x3_dw
: Conv7_1_1x1

: Conv7_2_3x3_dw
: Conv7_2_1x1

: Conv7_3 3x3_dw

: Conv7_3_1x1

: Conv7_4_3x3 dw

: Conv7_4_1x1

1 Conv7_5_3x3_dw ‘

1 Conv7_5_1x1
|}

: Conv8_3x3_dw
|}

: Conv9_3x3_dw

|

|

: Conv8_1x1 ‘
EXTT

|

: Conv9_1x1

<=

Chip summary
Technology GF 22FDX
Chip area 7.86mm?
FEA area 4.45mm?
# multipliers 42k
# SRAM memories 186
SRAM memory 1.1MB
Main clock 59MHz
Al model MobileNet v1
Training dataset ImageNet
Batch size 1
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NeuroCorgi ImageNet - Energy efficiency

45 900
z340 g
On HD images (1280x720) at 30FPS, 0.76V &35 0 2
= Main clock 59MHz 230 ol F
s 23.2mW @ 30FPS ©25 & S An HD camera @ 30FPS
m 772pd/frame g ics) : 250 é consumes ~100mwW
= 837pJipixel/frame . : o B
m Leakage 0.96%: 224uW £ S

680 700 720 740 760 780 800 820
Power supply (mV)

49
On 224x224 images at 0.76V 47 &
m Main clock 59MHz 45 % -
= 25./mW @ 605 FPS s 1.5mW for 224x224
m 42.4pd/frame 3 @30FPS
m 846pJ/pixel/frame 41%
= Leakage 0.88%: 224uW 39 ?ﬁ
37 @
0 35
@ 680 700 720 740 760 780 800 820 -
Power supply (mV)




Processing latency

On HD images @ 59MHz

Caency 1)

Conv3_1x1 — ‘ g
Conv5_1x1 916 2.75% » ”3‘;’,;’;’;;9' L éo”‘p”},te”“ré
Conv7_5_1x1 4790 14.37%
ConvO_1x1 6902 20.71%
m The first features are generated with only
21% of the input image

On 224x224 images @ 59MHz m 6.9ms latency on HD mages at 30FPS
Conv3_1x1 69 4.06%

Conv5_1x1 166 9.78%

Conv7_5_1x1 893 52.60%

Conv9_1x1 1288 75.86%
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Comparison with SoA

ISSCC’20 JSSC’23 JSSC’23 JSSC’24 JSSC’24 ISSCC’22 This work
Y. Jiao et al. J. -S. Park et al. DIANA Marsellus DynaPlasia Hiddenite NeuroCorgi
Technology 12nm 4nm 22nm 22nm FDX 28nm 40nm 22nm FDX
Application Server Mobile Edge Al-l1oT Embedded Embedded Embedded
. 18.7 (chip) . 9 (chip) 7.86 (chip)
2
Area (mm?2) 709 (chip) 4.74 (core) 3.3 (core) 2.42 (core) 20.25 (chip) 4.36 (core) 4.45 (FEA)
Programmability Programmable Programmable Programmable Programmable Programmable Configurable Fixed
Power consumption (mW) 25W — 276W 381 -5133 - 12.8-123 261 85.4-534.7 5-37
Training dataset ImageNet ImageNet ImageNet ImageNet ImageNet ImageNet ImageNet
Al model ResNet50 v1 MobileNet TPU ResNet18 ResNet18 ResNet18 ResNet50 MobileNet v1
()
% Precision (bits) 8 8 Analog + digital RBE 4x4b 9w, 8a ternary(w), 8a 4w, 4a
&)
o |Top-1 accuracy (%) 74.93 - 64.1 68.5 70.4 70.09 70.42
2 Inferences/second 224x224 78563 3433 277 20.8 7767 169.7¢ 788
2 (FPS) 1280x720 — — — - - - 39
zZ 224x224 0.2Pd 0.29° 3.6° 48° 1.297 5.92% 1.23
¢ | FEAlatency (ms) 1280x720 - - - - - - 6.90
@© 224x224 4.14 11.59 5.52¢ 5.83 10.8Y 16* 30.9¢
§ TOPSIW 1280x720 - — - - - - 30.9¢
Best FEA 224x224 20003 3400 6592 5573 3367 503w 36.7
Energy/inference

1 MAC = 2 Ops. Zero skipping included as MACs “Without considering off-chip memory accesses. PLatency reported on Inception v3. ¢Only feature extraction (no FC layer)

SEstimated feature extraction part. Assuming 1Conv OP = 1FC OP for latency and energy. FC is 0.18% (0.03%) of total MACs/frame on 224x224 images for MobileNet v1 (ResNet18)

"Power & latency off-chip weight loading from external DRAM / external host CPU / on-chip network / on-chip memory access / refresh are not included.

>9.2x better energy per inference at 224x224 images with similar accuracy

1.9x%

9.2x
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Conclusion

m NeuroCorgi is a Feature Extractor Accelerator targeting EdgeAl devices

m The streaming architecture leverages on fixed topology and fixed weights to achieve high
energy efficiency

Transfer learning technique is used to address multiple Al tasks

An implementation flow from application to circuit design is proposed
NeuroCorgi has been fabricated in three different variants
ImageNet SRAM variant show outstanding performances
m 23.2mW (772uJd/frame) with HD images at 30FPS

m 1.5mW with 224x224 images at 30FPS

m Processing latency of 6.9ms with HD at 30FPS

m At least 9.2x energy efficiency over prior ASICs
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