
A 772μJ/frame ImageNet Feature Extractor

Accelerator on HD Images at 30FPS

Ivan Miro-Panades*1, Vincent Lorrain*2, Lilian Billod1, Inna Kucher2, Vincent Templier2, Sylvain Choisnet1, Nermine Ali2,

Baptiste Rossigneux2, Olivier Bichler2, Alexandre Valentian1
1Univ. Grenoble Alpes, CEA, List, Grenoble, France; 2Univ. Paris-Saclay, CEA, List, Palaiseau, France;

*Equally Credited Authors (ECAs); Email: ivan.miro-panades@cea.fr

Abstract— Many applications benefit from AI inference at

the edge, in industry, agriculture and transportation domains.

The observed trend in image/video analysis is to increase the

resolution of sensors, thus increasing the need for powerful, yet

ultra-low power and low-latency hardware solutions. In this

paper, we explore a novel approach to meet these conflicting

requirements and we propose a whole new class of accelerator:

the Feature Extractor Accelerator (FEA). This solution enables

processing up to HD images (1280x720) at 30 frames per second

(FPS), using a fraction of the energy of the actual image sensor:

it consumes at most 23.2mW, with a 6.9ms latency, while

reaching 70.42% accuracy on ImageNet. This approach

combines two key principles: a feature extraction backbone and

transfer learning technique.

Keywords— NeuroCorgi, feature extractor, quantization,

transfer learning.

I. INTRODUCTION

Low power and low latency AI inference are essential

requirements for many applications, such as drone navigation,

mechanical weeding and augmented reality. It must be done

at the edge for safety, latency, power and privacy reasons. Yet

large Neural Network models are difficult to integrate on-chip

in an energy-efficient manner. The main issue lies in the large

number of parameters, which requires an external memory,

leading to a large power dissipation because of the data

movement. Numerous approaches exist to mitigate or

diminish the impact of these memory accesses. This can be

achieved through quantization [1], near calculation weights

generation [2, 3], or through computational scheduling that

favors the utilization of nearby memory [4]. All these

optimization methods are generally applicable to a vast

majority of programmable architectures.

But it is possible to push the energy boundary even further,

by exploiting the concept of transfer learning and completely

revisiting the architecture of accelerators. Transfer learning is

a technique in machine learning which allows reusing the

knowledge of a pre-trained model and applying it to new tasks.

This has gained popularity in Natural Language Processing,

where retraining a Foundation model from scratch would be

prohibitive. The strategy of reusing feature extraction was

introduced in [5], where the authors use the backbone of a

classification-trained network, and replace the final classifier

layers by a regression network and train it to predict object

bounding boxes for localization and object detection task.

When new database has limited number of samples, it was

proven that this strategy gives better and more stable

performance, than training the full network from scratch.

From the point of view of a hardware accelerator, it is

therefore possible to freeze the learned general knowledge of

a neural network and keep a customizable part adapted for

each new task. The first part, the backbone, computes the

features of the input data while the latter, the head, addresses

the task output (e.g. classification, segmentation, object

detection). A new class of accelerator is thus proposed: a

Feature Extractor Accelerator (FEA), which is a specialized

module to compute the backbone. By fixing the topology and

the weights of a FEA, it is possible to minimize both the

computing energy and latency while continuing supporting

multiple applications.

Fig. 1 depicts this proposal, where a ‘fixed weights and

fixed topology’ FEA is combined with a programmable AI

architecture, on an embedded AI computing platform. The

FEA is generated at design-time with either a generic database

(e.g. ImageNet) or a domain specific database. An

implementation flow is used for the training and generation of

the FEA part. Thus, it is possible to regenerate a specific FEA

accelerator when the generic one does not achieve the required

accuracy.

In this paper, a FEA architecture (NeuroCorgi_core) using

the MobileNet v1 topology and trained with ImageNet is

Fig. 1. Embedded AI computing platform for low-power low-latency AI applications. Our proposed fixed-topology fixed-weights feature extractor accelerator

(FEA) coupled with a programmable accelerator to address multiple AI tasks. Implementation and training flow for the FEA.

Corgi Builder

Export

Specifications

RTL (ASIC, FPGA, Emulator)

CPP model (bit accurate)

SDK model (for PyTorch)

Learning

& test
database

“Person: 95%”

Classification

Semantic
Segmentation

Object detection

AR

Target

applications
Embedded AI computing platform

Feature Extractor Accelerator (FEA)

Fixed topology and weights
(NeuroCorgi_core)

Programmable

AI accelerator

Heads for different AI tasks

HD images

@30FPS

Modeling

Quantization

Aware

Training

Aidge (formerly N2D2)

Optimization

Test
Transform

model to INT

presented, based on early concepts from [6]. It uses a

streaming architecture requiring no external memory

accesses. The topology and weighs are fixed: 4-bit

quantization is applied to weights and activations. On

ImageNet, it achieves 70.42% accuracy and sustains native

HD image inference at 30FPS with just 23.2mW.

II. NEUROCORGI OVERVIEW

NeuroCorgi (Fig. 2) is a FEA demonstrator circuit

supporting RGB images of up to 1280x720 pixels. It

implements a MobileNet v1 FEA (NeuroCorgi_core) with 27

convolution layers (Fig. 3). Computations occur without

external memory usage, whether for weights or activations.

The foundational principle revolves around eliminating the

energy cost of weights memory accesses by directly freezing

them into hard-wired lookup tables (HW-LUT).

Consequently, weights are merged with multiplication

operators to form Multi-Constant Multipliers (MCMs).

For automating the generation of the NeuroCorgi circuit, a

tool called CorgiBuilder was developed: it generates the RTL

code, a CPP simulation model and the SDK for PyTorch

integration. The generated architecture is customized at design

time with multiple parameters including the operator type, the

level of pipelining, the parallelization factor, bit precision and

saturation operations. To achieve low-latency computing with

batch size 1, the architecture uses a layer-wise streaming

approach. Moreover, the inter-layer buffers are minimized

using a Channel-Width-Height (CWH) traversal approach as

no data transposition occurs during the computation (Fig.4).

The MCM operators are optimized at design time and at

logic synthesis level. Their hardware and energy cost depend

on data dynamics and on the table radix [7]. To minimize the

data dynamics, the activations and weights are pruned and

quantized to 4 bits thanks to the Aidge [8] platform, using the

quantization aware training (QAT) method SAT [1]. The

resulting model obtains 70.42% classification accuracy on

ImageNet. On the other hand, the MCM radix depends on the

computing parallelism of the network. The higher the

computing parallelism, the lower the MCM radix, but also the

higher the area of the computing network. Thus, an optimal

point between area, computing parallelism and energy

consumption needs to be defined. CorgiBuilder tool allows

exploring all these combinations to obtain an optimal

implementation.

MobileNet v1 topology uses convolutions (Conv) and

depth–wise convolutions (Conv_DW). Both convolution

types can be implemented using two modes of data storage:

one storing inputs activations in the form of a line buffer (LB)

(Fig 5c/d), and the other storing accumulation results (DN

variant) (Fig. 5a/b). LB keeps input data to perform a patch

traversal of the input tensor (𝐼𝑙), while DN computes with

input pixel through z (𝐼𝑍(𝑝)
𝑙) and stores accumulation results to

perform a patch traversal on the output tensor (𝑂𝑙). Thus, LB

stores the input activations in registers and SRAM memories

while DN stores accumulations results on SRAM memories

(ACC SRAM in Fig 5a/b). For a (𝐾𝑥
𝑙 , 𝐾𝑦

𝑙) convolution layer,

both modes store (𝐾𝑦
𝑙 − 1) lines plus (𝐾𝑥

𝑙) pixels elements of

data. Thus, the storage increases linearly with the width of the

input image. Moreover, in terms of data width, the input

activations used by LB require less bits (e.g. 4bits) rather than

accumulation results (e.g. 10bits) of DN. In addition, LB is

partially implemented using registers to perform parallel read

operations (Fig 5c). Thus, LB performing fewer and smaller

read/write operations per MAC, it requires less energy per

MAC operation, but this comes at the cost of higher number

of registers than DN (Fig. 4b). This number depends on kernel

tensor dimension. For deeper layers (>512 features per pixel),

LB is unfeasible due to wire-routing congestion (Fig. 4c). Fig

3 shows the CorgiBuilder optimal point with the selected

operator mode and the bit precision used on the current

implementation.

Fig. 3. MobileNet v1 (=1) topology and parameters implemented on

NeuroCorgi circuit. Output feature depends on input image size..

NeuroCorgi_core (FEA)

512x128 256x128

VDD_core VDD_interface

SPI

Video IN

Feature OUT

Configuration

CLK

NeuroCorgi

Layers

1 to 8

(clk)

Layers

9 to 12

(clk_div2)

Layers

13 to 27

(clk_div4)

Inputs images
up to 1280x720

RGB @ 30FPS

Output feature map (div4)

320 x 180 x 128

Output feature map (div8)

160 x 90 x 256

Output feature map (div16)

80 x 45 x 512

Output feature map (div32)

40 x 23 x 1024

1: Conv1

2: Conv1_3x3_dw

3: Conv1_1x1

4: Conv2_3x3_dw

5: Conv2_1x1

6: Conv3_3x3_dw

7: Conv3_1x1

8: Conv4_3x3_dw

9: Conv4_1x1

10: Conv5_3x3_dw

11: Conv5_1x1

12: Conv6_3x3_dw

13: Conv6_1x1

14: Conv7_1_3x3_dw

15: Conv7_1_1x1

16: Conv7_2_3x3_dw

17: Conv7_2_1x1

18: Conv7_3_3x3_dw

19: Conv7_3_1x1

20: Conv7_4_3x3_dw

21: Conv7_4_1x1

22: Conv7_5_3x3_dw

23: Conv7_5_1x1

24: Conv8_3x3_dw

25: Conv8_1x1

26: Conv9_3x3_dw

27: Conv9_1x1

NeuroCorgi_core (FEA) Weight
bits

Activ.
bits

Acc.
bits

Computational
mode

8 4 20 LB Conv
4 4 12 LB Conv DW
4 4 10 LB Conv
4 4 11 LB Conv DW
4 4 12 LB Conv
4 4 10 LB Conv DW
4 4 11 LB Conv
4 4 11 LB Conv DW
4 4 11 LB Conv
4 4 10 LB Conv DW
4 4 10 LB Conv
4 4 10 DN Conv DW
4 4 11 LB Conv
4 4 10 DN Conv DW
4 4 10 LB Conv
4 4 10 DN Conv DW
4 4 10 LB Conv
4 4 10 DN Conv DW
4 4 10 LB Conv
4 4 10 DN Conv DW
4 4 10 LB Conv
4 4 10 DN Conv DW
4 4 10 LB Conv
4 4 10 DN Conv DW
4 4 11 LB Conv
4 4 11 DN Conv DW
4 4 10 LB Conv

a) Size and bit notations for the l layer

b) Memory and MCM need by configuration

𝐾𝑥
𝑙

𝑂
𝑙

𝐼
𝑙

𝑂
 𝑙

𝑂

(𝑝
)

𝑙
𝑂

𝑙

𝑂𝑥
𝑙𝐼𝑥

𝑙

𝐼
𝑙

𝑙

𝐼 𝑙

𝐼
(𝑝
)

𝑙
𝐼

𝑙

Input tensor

I

Kernel
tensor

K

Of

𝐾
𝑙

bits

…

Output tensor

O

(acc bits)of bits of bits𝑂
𝑙

CONV CONV_DW

L
B

I
b

its
 (

 −1

)

O b
its ()

#

M
C

M

𝑂 (𝑝)
𝑙 𝐼 (𝑝)

𝑙 𝐾𝑥
𝑙𝐾𝑦

𝑙 𝑂 (𝑝)
𝑙 𝐾𝑥

𝑙𝐾𝑦
𝑙

D
N

I
b

its (()

 , ()

)

O b
its

 −1

#
M

C
M

𝑂 (𝑝)
𝑙 𝐼 (𝑝)

𝑙 𝑂 (𝑝)
𝑙

c) Number of registers using LB or DN

approaches in function of the layer

4: Conv2_3x3_dw 24: Conv8_3x3_dw

1248
64

19072

512

LB DN LB DN

M
or

e
en

er
gy

 e
ff

ic
ie

nt

Le
ss

 a
re

a
an

d
lo

w
er

ro

ut
in

g
co

ng
es

tio
n

Fig. 4. (a) Layer notation, (b) MCM requirements and (c) register complexity

of DN and LB on DW layer.

Fig. 2. NeuroCorgi circuit containing the feature extractor accelerator

(FEA). No external memory interface, only video IN and feature OUT.

SRAM data operations are high energy consuming w.r.t

MAC energy operation [14]. Thus, data reuse is key to

minimize energy. Computing convolution operations with

MCM requires less energy than with conventional multipliers

and SRAM memories as the read energy of HW-LUT is much

lower than SRAM memory. Therefore, is it possible to

minimize the area and compute energy of a convolution kernel

by reading activation SRAMs fewer times and weights

multiple times.

Network parameters in HW-LUTs benefit from synthesis

tool optimizations. Thus, MCM operators and adder-trees are

then optimized with fixed weight values. In the NeuroCorgi

implementation, a layer computes up-to 128MACs in a single

clock cycle per MCM. Thus, in order to minimize glitch power

on these long combinational paths, the clocks are deskewed.

FIFOs and clock dividers are inserted between layers to

improve MAC utilization and energy efficiency by avoiding

pipeline bubbles due to line stride (Fig. 2). Moreover, FIFO

depths are defined to sustain the required framerate. Finally,

QAT is implemented using saturation operators, ReLU

clipping and fixed-point scaling (Fig. 6).

Several experiments were carried out to confirm the

generalization of the transfer learning technique to a wide

spectrum of applications [15]. A Cityscapes [16] segmentation

task using 1280x640 images was implemented. It achieves

73.3% mIoU when combining NeuroCorgi with a

programmable AI architecture (as illustrated in Fig. 1): 96.7%

of the total MAC operations are done in NeuroCorgi, the

remaining operations are executed in the programmable AI

accelerator. The latter is currently emulated thanks to an

FPGA.

This proves that a generic backbone, combined with

transfer learning, is applicable to a wide range of domains.

That approach was further explored: three different variants of

NeuroCorgi, targeting different application domains, were

fabricated in GF22FDX technology and successfully tested.

This further confirms that the approach is flexible.

III. MEASUREMENTS RESULTS

Our generic ImageNet variant (Fig. 9) contains 42kMAC

operators and 186 SRAM memories. The chip area is 7.86mm²

while the FEA area is 4.45mm². At 0.76V and 59MHz, it

performs continuous feature extraction of HD images at

30FPS with 23.2mW, 772µJ/frame (Fig. 7). The distribution

of power consumption is as follows: 81% is allocated to the

combinatorial portion, 12% to the SRAMs, and 7% to the

sequential logic. At this operating point, FEA has 224μW

leakage and 1064μW idle power.

S
A

T
S

A
T

S
A

T
S

A
T

S
A

T
S

A
T

B
IA

S
E

S

H
W

-LU
T

…𝑂 (𝑝)
𝑙

a) ACC and Bias bloc detail b) Clip and Scale block detail

C
LIP

S
C

A
LE

ACC BIASES …

SCALE

HW-LUT

0
>

0

0

+

+

+

<<x
0.5

0.5

0.5

<<x

<<x

SAT

SAT

SAT

𝑂 (𝑝)
𝑙

CLIP

HW-LUT

X

X

X

>

>

+++

Fig. 6. Detail of (a) accumulation and biases block and (b) clip and scale block

Fig. 5. Compute modes using DN (a)(b) and LB (c)(d) approaches for regular

and depth-wise (DW) layers.

650

700

750

800

850

900

0

5

10

15

20

25

30

35

40

45

680 700 720 740 760 780 800 820

En
er

gy
/i

n
fe

re
n

ce
 (

µ
J/

fr
am

e)

Fr
am

es
 p

er
 s

ec
o

n
d

 (F
P

S)

Power supply (mV)

5.15 mW

7.62 FPS

23.2 mW

30 FPS

Fig. 7. Measures of energy per inference and FPS on 1280x720 images

35

37

39

41

43

45

47

49

0

100

200

300

400

500

600

700

800

900

680 700 720 740 760 780 800 820

En
er

gy
/i

n
fe

re
n

ce
 (

µ
J/

fr
am

e)

Fr
am

es
 p

er
 s

ec
o

n
d

 (F
P

S)

Power supply (mV)

5.33 mW

145 FPS

25.7 mW

605 FPS

Fig. 8. Measures of energy per inference and FPS on 224x224 images.

𝑂 (𝑝)
𝑙

𝑂 (𝑝)
𝑙

b) DN Conv

a) DN Conv DW

SRAM
𝐾𝑥
𝑙

𝐾𝑦
𝑙

𝐼𝑥
𝑙

…

……

𝑂

(𝑝
)

𝑙

𝐼
(𝑝
)

𝑙

…

…

𝐼
(𝑝
)

𝑙

𝑂

(𝑝
)

𝑙

…

d) LB Conv

c) LB Conv DW

𝑂 (𝑝)
𝑙

𝐼 (𝑝)
𝑙

…

…

A
d

d
e

rT
re

e

MCM

MCM

MCM

A
d

d
e

rT
re

e

MCM

MCM

MCM

A
d

d
e

rT
re

e

MCM

MCM

MCM

D
N

 A
d

ap
te

r

C
LIP

S
C

A
LE

ACC BIASES

ACC SRAM

𝐼 (𝑝)
𝑙 𝑂 (𝑝)

𝑙

A
d

d
e

rT
re

e

A
d

d
e

rT
re

e

…

…

Li
ne

 b
uf

fe
r

(L
B

)

C
LIP

S
C

A
LE

ACC BIASES

Li
ne

 b
uf

fe
r

(L
B

)

C
LIP

S
C

A
LE

ACC BIASES

Weights

HW-LUT

D
N

 A
d

ap
te

r

C
LIP

S
C

A
LE

ACC BIASES

x
MCM

MCM

MCM

MCM
MCM

MCM

MCM
MCM

MCM

MCM
MCM

MCM A
dd

er
Tr

ee

𝐼
𝑙

𝐾𝑥
𝑙

𝐾𝑦
𝑙

ACC regs

ACC regsACC SRAM …

…

DN Adapter LB

When reducing the voltage to 0.7V, the circuit processes

7.62FPS with 5.15mW, 675µJ/frame. At 0.8V, it reaches

39FPS with a power consumption of 33.4mW, 854µJ/frame.

The UHVT cells used in the design limit the low voltage

operating range of the circuit. On the other hand, the leakage

is drastically reduced as it only represents 1% of the total

power. Thus, the circuit remains energy efficient at low and

high framerates. We also demonstrate feature extraction of

224x224 images at 0.70V and 145FPS, with 5.33mW,

36.7µJ/frame (Fig. 8). At 0.8V and 77MHz, it reaches 788FPS

with 37.1mW, 47.1µJ/frame.

The inference energy per input pixel (i.e. energy per

inference divided by the input image size) is virtually constant

regardless of image size: 733pJ/frame/pixel (HD) and

731pJ/frame/pixel (224x224). The pipelining has been

balanced to maximize the computing and energy efficiency

regardless of the image size.

The computed latency (i.e. the time between the first input

pixel and the first output feature at conv9_1x1) depends on the

image size. For HD images at 30FPS, the latency is 6.9ms.

This represents 20.7% of the reading time of the image. For

224x224 images at 605FPFS, the latency is 1.28ms (75.8% of

image time).

Table I compares this work with prior art. The selected

publications report end-to-end energy and latency for

ImageNet use case. Thus, the energy and efficiency are

reported when computing the full network and not only on the

best layer. In the table, the application domains are stated, as

the power consumption ranges are extremely different. Server

[9] and mobile [10] circuits achieves high framerate with also

high power consumptions. Embedded systems [2, 11, 12, 13]

reach high-energy efficiency but their reduced internal

memory limits this performances to reduced image sizes. The

programmability is also reported, as NeuroCorgi has fixed

topology and fixed weights. As NeuroCorgi implements only

the FEA part (FC layer is not computed), the SoA latency and

energy are estimated for the FEA part only (FC on MobileNet

v1 on 224x224 images represents 0.18% of the total MAC

operations). For a particular architecture, the computing

energy efficiency can be increased when the bit precision is

reduced at the expense of loss of accuracy. Thus, the work in

[13] obtains better energy efficiency at macro level when

reducing the bit precision to (5w, 4a). However, neither

system-level efficiency nor accuracy is reported for this

reduced precision. Finally, none of the compared works

reported inference on HD images.

When benchmarking on ImageNet, our fixed architecture

achieves at least 1.93× higher energy efficiency (TOPS/W)

and 9.2× lower energy per frame (µJ/frame), while also

supporting HD image resolution up to 39FPS.

IV. CONCLUSION

To meet the needs of powerful, yet ultra-low power and

low latency AI accelerators at the edge, we combine a fixed

Feature Extraction backbone and the concept of transfer

learning, for retraining the programmable output heads. This

led to the design and fabrication of the NeuroCorgi circuit,

which is in itself the first instance of a new class of

accelerators: the Feature Extraction Accelerators. It is, to the

best of our knowledge, the lowest power-consuming

accelerator of the state-of-the-art, capable of handling HD

images at 30 FPS for 23.2mW.

ACKNOWLEDGMENT

ANDANTE (ECSEL 876925), PREVAIL (DIGITAL

101083307) EU projects. David Briand, Johannes Christian

Thiele and Marc Duranton for their contribution.

TABLE I. Comparison with state-of-the-art.

2.8mm
Chip summary

Technology GF 22FDX

Chip area 7.86mm²

FEA area 4.45mm²

multipliers 42k

SRAM memories 186

SRAM memory 1.1MB

Main clock 59MHz

AI model MobileNet v1

Training dataset ImageNet

Batch size 1

2.
8m

m

3

5

6

7

F9

11

12

8

1
2

4

10

13

F
I

F
O

14 15

18 19

17 16

2120

23 22

24 25

2627

Fig. 9. NeuroCorgi die photo with floorplan and chip summary.

ISSCC’20 [9] JSSC’23 [10]
JSSC’23 [11]

DIANA
JSSC’24 [12]

Marsellus
JSSC’24 [13]
DynaPlasia

ISSCC’22 [2]
Hiddenite

This work
NeuroCorgi

Technology 12nm 4nm 22nm 22nm FDX 28nm 40nm 22nm FDX

Application Server Mobile Edge AI-IoT Embedded Embedded Embedded

Area (mm²) 709 (chip) 4.74 (core) 3.3 (core)
18.7 (chip)
2.42 (core)

20.25 (chip)
9 (chip)

4.36 (core)
7.86 (chip)
4.45 (FEA)

Programmability Programmable Programmable Programmable Programmable Programmable Configurable Fixed

Power consumption (mW) 25W – 276W 381 – 5133 – 12.8 – 123 261 85.4 – 534.7 5 – 37

Im
ag

eN
et

 u
se

 c
as

e

Training dataset ImageNet ImageNet ImageNet ImageNet ImageNet ImageNet ImageNet

AI model ResNet50 v1 MobileNet TPU ResNet18 ResNet18 ResNet18 ResNet50 MobileNet v1

Precision (bits) 8 8 Analog + digital RBE 4x4b 9w, 8a ternary(w), 8a 4w, 4a

Top-1 accuracy (%) 74.93 – 64.1 68.5 70.4 70.09 70.42

Inferences/second
(FPS)

224x224 78563 3433 277 20.8 776 169.7 788

1280x720 – – – – – – 39

FEA latency (ms)
224x224 0.2 0.29 3.6 48 1.29 5.92 1.23

1280x720 – – – – – – 6.90

TOPS/W
224x224 4.14 11.59 5.52 5.83 10.8 16 30.9

1280x720 – – – – – – 30.9

Best FEA
Energy/inference

(µJ/frame)

224x224 2000 340 659 557 336 503 36.7

1280x720 – – – – – – 676

1 MAC = 2 Ops. Zero skipping included as MACs Without considering off-chip memory accesses. Latency reported on Inception v3. Only feature extraction (no FC layer)
Estimated feature extraction part. Assuming 1Conv OP = 1FC OP for latency and energy. FC is 0.18% (0.03%) of total MACs/frame on 224x224 images for MobileNet v1 (ResNet18)
Power & latency off-chip weight loading from external DRAM / external host CPU / on-chip network / on-chip memory access / refresh are not included.

REFERENCES

[1] Qing Jin et al, "Towards Efficient Training for Neural Network
Quantization," https://doi.org/10.48550/arXiv.1912.10207.

[2] K. Hirose et al., "Hiddenite: 4K-PE Hidden Network Inference 4D-
Tensor Engine Exploiting On-Chip Model Construction Achieving
34.8-to-16.0TOPS/W for CIFAR-100 and ImageNet," 2022 IEEE
International Solid-State Circuits Conference (ISSCC), San Francisco,
CA, USA, 2022, pp. 1-3, doi: 10.1109/ISSCC42614.2022.9731668.

[3] V. Ramanujan, M. Wortsman, A. Kembhavi, A. Farhadi and M.
Rastegari, "What’s Hidden in a Randomly Weighted Neural
Network?," 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp. 11890-
11899, doi: 10.1109/CVPR42600.2020.01191.

[4] Y. -H. Chen, T. -J. Yang, J. Emer and V. Sze, "Eyeriss v2: A Flexible
Accelerator for Emerging Deep Neural Networks on Mobile Devices,"
in IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 9, no. 2, pp. 292-308, June 2019, doi:
10.1109/JETCAS.2019.2910232.

[5] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob
Fergus and Yann LeCun, "OverFeat: Integrated Recognition,
Localization and Detection using Convolutional Networks",
https://doi.org/10.48550/arXiv.1312.6229.

[6] I. Miro-Panades et al., "Meeting the Latency and Energy Constraints
on Timing-critical Edge-AI Systems," book Embedded Artificial
Intelligence, River Publishers, 2023.

[7] A. K. Oudjida, A. Liacha, M. Bakiri and N. Chaillet, "Multiple
Constant Multiplication Algorithm for High-Speed and Low-Power
Design," in IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 63, no. 2, pp. 176-180, Feb. 2016, doi:
10.1109/TCSII.2015.2469051.

[8] https://projects.eclipse.org/projects/technology.aidge

[9] Y. Jiao et al., "7.2 A 12nm Programmable Convolution-Efficient
Neural-Processing-Unit Chip Achieving 825TOPS," 2020 IEEE
International Solid-State Circuits Conference - (ISSCC), San
Francisco, CA, USA, 2020, pp. 136-140, doi:
10.1109/ISSCC19947.2020.9062984.

[10] J. -S. Park et al., "A Multi-Mode 8k-MAC HW-Utilization-Aware
Neural Processing Unit With a Unified Multi-Precision Datapath in 4-
nm Flagship Mobile SoC," in IEEE Journal of Solid-State Circuits, vol.
58, no. 1, pp. 189-202, Jan. 2023, doi: 10.1109/JSSC.2022.3205713.

[11] P. Houshmand et al., "DIANA: An End-to-End Hybrid DIgital and
ANAlog Neural Network SoC for the Edge," in IEEE Journal of Solid-
State Circuits, vol. 58, no. 1, pp. 203-215, Jan. 2023, doi:
10.1109/JSSC.2022.3214064.

[12] F. Conti et al., "Marsellus: A Heterogeneous RISC-V AI-IoT End-
Node SoC With 2–8 b DNN Acceleration and 30%-Boost Adaptive
Body Biasing," in IEEE Journal of Solid-State Circuits, vol. 59, no. 1,
pp. 128-142, Jan. 2024, doi: 10.1109/JSSC.2023.3318301.

[13] S. Kim et al., "DynaPlasia: An eDRAM In-Memory Computing-Based
Reconfigurable Spatial Accelerator With Triple-Mode Cell," in IEEE
Journal of Solid-State Circuits, vol. 59, no. 1, pp. 102-115, Jan. 2024,
doi: 10.1109/JSSC.2023.3319962.

[14] Bill Dally, “To ExaScale and Beyond,” SuperComputing 2010.

[15] I. Miro-Panades et al., "A Multi-Application Platform Supporting
Several Uses Cases in the Domains Digital Farming and Transport and
Smart Mobility," European Conference on EDGE AI Technologies and
Applications (EEAI), Oct. 2023 Athens, Greece.

[16] https://www.cityscapes-dataset.com

