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Abstract— Many applications benefit from AI inference at 

the edge, in industry, agriculture and transportation domains. 

The observed trend in image/video analysis is to increase the 

resolution of sensors, thus increasing the need for powerful, yet 

ultra-low power and low-latency hardware solutions. In this 

paper, we explore a novel approach to meet these conflicting 

requirements and we propose a whole new class of accelerator: 

the Feature Extractor Accelerator (FEA). This solution enables 

processing up to HD images (1280x720) at 30 frames per second 

(FPS), using a fraction of the energy of the actual image sensor: 

it consumes at most 23.2mW, with a 6.9ms latency, while 

reaching 70.42% accuracy on ImageNet. This approach 

combines two key principles: a feature extraction backbone and 

transfer learning technique.  

Keywords— NeuroCorgi, feature extractor, quantization, 

transfer learning. 

I. INTRODUCTION 

Low power and low latency AI inference are essential 

requirements for many applications, such as drone navigation, 

mechanical weeding and augmented reality. It must be done 

at the edge for safety, latency, power and privacy reasons. Yet 

large Neural Network models are difficult to integrate on-chip 

in an energy-efficient manner. The main issue lies in the large 

number of parameters, which requires an external memory, 

leading to a large power dissipation because of the data 

movement. Numerous approaches exist to mitigate or 

diminish the impact of these memory accesses. This can be 

achieved through quantization [1], near calculation weights 

generation [2, 3], or through computational scheduling that 

favors the utilization of nearby memory [4]. All these 

optimization methods are generally applicable to a vast 

majority of programmable architectures.  

But it is possible to push the energy boundary even further, 

by exploiting the concept of transfer learning and completely 

revisiting the architecture of accelerators. Transfer learning is 

a technique in machine learning which allows reusing the 

knowledge of a pre-trained model and applying it to new tasks. 

This has gained popularity in Natural Language Processing, 

where retraining a Foundation model from scratch would be 

prohibitive. The strategy of reusing feature extraction was 

introduced in [5], where the authors use the backbone of a 

classification-trained network, and replace the final classifier 

layers by a regression network and train it to predict object 

bounding boxes for localization and object detection task. 

When new database has limited number of samples, it was 

proven that this strategy gives better and more stable 

performance, than training the full network from scratch. 

From the point of view of a hardware accelerator, it is 

therefore possible to freeze the learned general knowledge of 

a neural network and keep a customizable part adapted for 

each new task. The first part, the backbone, computes the 

features of the input data while the latter, the head, addresses 

the task output (e.g. classification, segmentation, object 

detection). A new class of accelerator is thus proposed: a 

Feature Extractor Accelerator (FEA), which is a specialized 

module to compute the backbone. By fixing the topology and 

the weights of a FEA, it is possible to minimize both the 

computing energy and latency while continuing supporting 

multiple applications.  

Fig. 1 depicts this proposal, where a ‘fixed weights and 

fixed topology’ FEA is combined with a programmable AI 

architecture, on an embedded AI computing platform. The 

FEA is generated at design-time with either a generic database 

(e.g. ImageNet) or a domain specific database. An 

implementation flow is used for the training and generation of 

the FEA part. Thus, it is possible to regenerate a specific FEA 

accelerator when the generic one does not achieve the required 

accuracy. 

In this paper, a FEA architecture (NeuroCorgi_core) using 

the MobileNet v1 topology and trained with ImageNet is 

Fig. 1. Embedded AI computing platform for low-power low-latency AI applications. Our proposed fixed-topology fixed-weights feature extractor accelerator 

(FEA) coupled with a programmable accelerator to address multiple AI tasks. Implementation and training flow for the FEA. 
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presented, based on early concepts from [6]. It uses a 

streaming architecture requiring no external memory 

accesses. The topology and weighs are fixed: 4-bit 

quantization is applied to weights and activations. On 

ImageNet, it achieves 70.42% accuracy and sustains native 

HD image inference at 30FPS with just 23.2mW. 

II. NEUROCORGI OVERVIEW 

NeuroCorgi (Fig. 2) is a FEA demonstrator circuit 

supporting RGB images of up to 1280x720 pixels. It 

implements a MobileNet v1 FEA (NeuroCorgi_core) with 27 

convolution layers (Fig. 3). Computations occur without 

external memory usage, whether for weights or activations. 

The foundational principle revolves around eliminating the 

energy cost of weights memory accesses by directly freezing 

them into hard-wired lookup tables (HW-LUT). 

Consequently, weights are merged with multiplication 

operators to form Multi-Constant Multipliers (MCMs).  

For automating the generation of the NeuroCorgi circuit, a 

tool called CorgiBuilder was developed: it generates the RTL 

code, a CPP simulation model and the SDK for PyTorch 

integration. The generated architecture is customized at design 

time with multiple parameters including the operator type, the 

level of pipelining, the parallelization factor, bit precision and 

saturation operations. To achieve low-latency computing with 

batch size 1, the architecture uses a layer-wise streaming 

approach. Moreover, the inter-layer buffers are minimized 

using a Channel-Width-Height (CWH) traversal approach as 

no data transposition occurs during the computation (Fig.4).  

The MCM operators are optimized at design time and at 

logic synthesis level. Their hardware and energy cost depend 

on data dynamics and on the table radix [7]. To minimize the 

data dynamics, the activations and weights are pruned and 

quantized to 4 bits thanks to the Aidge [8] platform, using the 

quantization aware training (QAT) method SAT [1]. The 

resulting model obtains 70.42% classification accuracy on 

ImageNet. On the other hand, the MCM radix depends on the 

computing parallelism of the network. The higher the 

computing parallelism, the lower the MCM radix, but also the 

higher the area of the computing network.  Thus, an optimal 

point between area, computing parallelism and energy 

consumption needs to be defined. CorgiBuilder tool allows 

exploring all these combinations to obtain an optimal 

implementation. 

MobileNet v1 topology uses convolutions (Conv) and 

depth–wise convolutions (Conv_DW). Both convolution 

types can be implemented using two modes of data storage: 

one storing inputs activations in the form of a line buffer (LB) 

(Fig 5c/d), and the other storing accumulation results (DN 

variant) (Fig. 5a/b). LB keeps input data to perform a patch 

traversal of the input tensor (𝐼𝑙 ), while DN computes with 

input pixel through z (𝐼𝑍(𝑝)
𝑙 ) and stores accumulation results to 

perform a patch traversal on the output tensor (𝑂𝑙). Thus, LB 

stores the input activations in registers and SRAM memories 

while DN stores accumulations results on SRAM memories 

(ACC SRAM in Fig 5a/b). For a (𝐾𝑥
𝑙 , 𝐾𝑦

𝑙)  convolution layer, 

both modes store (𝐾𝑦
𝑙 − 1) lines plus (𝐾𝑥

𝑙) pixels elements of 

data. Thus, the storage increases linearly with the width of the 

input image. Moreover, in terms of data width, the input 

activations used by LB require less bits (e.g. 4bits) rather than 

accumulation results (e.g. 10bits) of DN. In addition, LB is 

partially implemented using registers to perform parallel read 

operations (Fig 5c). Thus, LB performing fewer and smaller 

read/write operations per MAC, it requires less energy per 

MAC operation, but this comes at the cost of higher number 

of registers than DN (Fig. 4b). This number depends on kernel 

tensor dimension. For deeper layers (>512 features per pixel), 

LB is unfeasible due to wire-routing congestion (Fig. 4c). Fig 

3 shows the CorgiBuilder optimal point with the selected 

operator mode and the bit precision used on the current 

implementation. 

Fig. 3. MobileNet v1 (=1) topology and parameters implemented on 

NeuroCorgi circuit. Output feature depends on input image size.. 
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Fig. 2. NeuroCorgi circuit containing the feature extractor accelerator 

(FEA). No external memory interface, only video IN and feature OUT. 



SRAM data operations are high energy consuming w.r.t 

MAC energy operation [14]. Thus, data reuse is key to 

minimize energy. Computing convolution operations with 

MCM requires less energy than with conventional multipliers 

and SRAM memories as the read energy of HW-LUT is much 

lower than SRAM memory. Therefore, is it possible to 

minimize the area and compute energy of a convolution kernel 

by reading activation SRAMs fewer times and weights 

multiple times. 

Network parameters in HW-LUTs benefit from synthesis 

tool optimizations. Thus, MCM operators and adder-trees are 

then optimized with fixed weight values. In the NeuroCorgi 

implementation, a layer computes up-to 128MACs in a single 

clock cycle per MCM. Thus, in order to minimize glitch power 

on these long combinational paths, the clocks are deskewed. 

FIFOs and clock dividers are inserted between layers to 

improve MAC utilization and energy efficiency by avoiding 

pipeline bubbles due to line stride (Fig. 2). Moreover, FIFO 

depths are defined to sustain the required framerate. Finally, 

QAT is implemented using saturation operators, ReLU 

clipping and fixed-point scaling (Fig. 6).  

Several experiments were carried out to confirm the 

generalization of the transfer learning technique to a wide 

spectrum of applications [15]. A Cityscapes [16] segmentation 

task using 1280x640 images was implemented. It achieves 

73.3% mIoU when combining NeuroCorgi with a 

programmable AI architecture (as illustrated in Fig. 1): 96.7% 

of the total MAC operations are done in NeuroCorgi, the 

remaining operations are executed in the programmable AI 

accelerator. The latter is currently emulated thanks to an 

FPGA.  

This proves that a generic backbone, combined with 

transfer learning, is applicable to a wide range of domains. 

That approach was further explored: three different variants of 

NeuroCorgi, targeting different application domains, were 

fabricated in GF22FDX technology and successfully tested. 

This further confirms that the approach is flexible. 

III. MEASUREMENTS RESULTS 

Our generic ImageNet variant (Fig. 9) contains 42kMAC 

operators and 186 SRAM memories. The chip area is 7.86mm² 

while the FEA area is 4.45mm². At 0.76V and 59MHz, it 

performs continuous feature extraction of HD images at 

30FPS with 23.2mW, 772µJ/frame (Fig. 7). The distribution 

of power consumption is as follows: 81% is allocated to the 

combinatorial portion, 12% to the SRAMs, and 7% to the 

sequential logic. At this operating point, FEA has 224μW 

leakage and 1064μW idle power.  
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Fig. 5. Compute modes using DN (a)(b) and LB (c)(d) approaches for regular 

and depth-wise (DW) layers. 
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When reducing the voltage to 0.7V, the circuit processes 

7.62FPS with 5.15mW, 675µJ/frame. At 0.8V, it reaches 

39FPS with a power consumption of 33.4mW, 854µJ/frame. 

The UHVT cells used in the design limit the low voltage 

operating range of the circuit. On the other hand, the leakage 

is drastically reduced as it only represents 1% of the total 

power. Thus, the circuit remains energy efficient at low and 

high framerates. We also demonstrate feature extraction of 

224x224 images at 0.70V and 145FPS, with 5.33mW, 

36.7µJ/frame (Fig. 8). At 0.8V and 77MHz, it reaches 788FPS 

with 37.1mW, 47.1µJ/frame.  

The inference energy per input pixel (i.e. energy per 

inference divided by the input image size) is virtually constant 

regardless of image size: 733pJ/frame/pixel (HD) and 

731pJ/frame/pixel (224x224). The pipelining has been 

balanced to maximize the computing and energy efficiency 

regardless of the image size. 

The computed latency (i.e. the time between the first input 

pixel and the first output feature at conv9_1x1) depends on the 

image size. For HD images at 30FPS, the latency is 6.9ms. 

This represents 20.7% of the reading time of the image. For 

224x224 images at 605FPFS, the latency is 1.28ms (75.8% of 

image time). 

Table I compares this work with prior art. The selected 

publications report end-to-end energy and latency for 

ImageNet use case. Thus, the energy and efficiency are 

reported when computing the full network and not only on the 

best layer. In the table, the application domains are stated, as 

the power consumption ranges are extremely different. Server 

[9] and mobile [10] circuits achieves high framerate with also 

high power consumptions. Embedded systems [2, 11, 12, 13] 

reach high-energy efficiency but their reduced internal 

memory limits this performances to reduced image sizes. The 

programmability is also reported, as NeuroCorgi has fixed 

topology and fixed weights. As NeuroCorgi implements only 

the FEA part (FC layer is not computed), the SoA latency and 

energy are estimated for the FEA part only (FC on MobileNet 

v1 on 224x224 images represents 0.18% of the total MAC 

operations). For a particular architecture, the computing 

energy efficiency can be increased when the bit precision is 

reduced at the expense of loss of accuracy. Thus, the work in 

[13] obtains better energy efficiency at macro level when 

reducing the bit precision to (5w, 4a). However, neither 

system-level efficiency nor accuracy is reported for this 

reduced precision. Finally, none of the compared works 

reported inference on HD images.  

When benchmarking on ImageNet, our fixed architecture 

achieves at least 1.93× higher energy efficiency (TOPS/W) 

and 9.2× lower energy per frame (µJ/frame), while also 

supporting HD image resolution up to 39FPS. 

IV. CONCLUSION 

To meet the needs of powerful, yet ultra-low power and 

low latency AI accelerators at the edge, we combine a fixed 

Feature Extraction backbone and the concept of transfer 

learning, for retraining the programmable output heads. This 

led to the design and fabrication of the NeuroCorgi circuit, 

which is in itself the first instance of a new class of 

accelerators: the Feature Extraction Accelerators. It is, to the 

best of our knowledge, the lowest power-consuming 

accelerator of the state-of-the-art, capable of handling HD 

images at 30 FPS for 23.2mW.  
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Training dataset ImageNet ImageNet ImageNet ImageNet ImageNet ImageNet ImageNet

AI model ResNet50 v1 MobileNet TPU ResNet18 ResNet18 ResNet18 ResNet50 MobileNet v1

Precision (bits) 8 8 Analog + digital RBE 4x4b 9w, 8a ternary(w), 8a 4w, 4a

Top-1 accuracy (%) 74.93 – 64.1 68.5 70.4 70.09 70.42

Inferences/second
(FPS)

224x224 78563 3433 277 20.8 776 169.7 788

1280x720 – – – – – – 39

FEA latency (ms)
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1 MAC = 2 Ops. Zero skipping included as MACs Without considering off-chip memory accesses. Latency reported on Inception v3. Only feature extraction (no FC layer)
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REFERENCES 

[1] Qing Jin et al, "Towards Efficient Training for Neural Network 
Quantization," https://doi.org/10.48550/arXiv.1912.10207. 

[2] K. Hirose et al., "Hiddenite: 4K-PE Hidden Network Inference 4D-
Tensor Engine Exploiting On-Chip Model Construction Achieving 
34.8-to-16.0TOPS/W for CIFAR-100 and ImageNet," 2022 IEEE 
International Solid-State Circuits Conference (ISSCC), San Francisco, 
CA, USA, 2022, pp. 1-3, doi: 10.1109/ISSCC42614.2022.9731668. 

[3] V. Ramanujan, M. Wortsman, A. Kembhavi, A. Farhadi and M. 
Rastegari, "What’s Hidden in a Randomly Weighted Neural 
Network?," 2020 IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (CVPR), Seattle, WA, USA, 2020, pp. 11890-
11899, doi: 10.1109/CVPR42600.2020.01191. 

[4] Y. -H. Chen, T. -J. Yang, J. Emer and V. Sze, "Eyeriss v2: A Flexible 
Accelerator for Emerging Deep Neural Networks on Mobile Devices," 
in IEEE Journal on Emerging and Selected Topics in Circuits and 
Systems, vol. 9, no. 2, pp. 292-308, June 2019, doi: 
10.1109/JETCAS.2019.2910232. 

[5] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob 
Fergus and Yann LeCun, "OverFeat: Integrated Recognition, 
Localization and Detection using Convolutional Networks", 
https://doi.org/10.48550/arXiv.1312.6229. 

[6] I. Miro-Panades et al., "Meeting the Latency and Energy Constraints 
on Timing-critical Edge-AI Systems," book Embedded Artificial 
Intelligence, River Publishers, 2023. 

[7] A. K. Oudjida, A. Liacha, M. Bakiri and N. Chaillet, "Multiple 
Constant Multiplication Algorithm for High-Speed and Low-Power 
Design," in IEEE Transactions on Circuits and Systems II: Express 
Briefs, vol. 63, no. 2, pp. 176-180, Feb. 2016, doi: 
10.1109/TCSII.2015.2469051. 

[8] https://projects.eclipse.org/projects/technology.aidge 

[9] Y. Jiao et al., "7.2 A 12nm Programmable Convolution-Efficient 
Neural-Processing-Unit Chip Achieving 825TOPS," 2020 IEEE 
International Solid-State Circuits Conference - (ISSCC), San 
Francisco, CA, USA, 2020, pp. 136-140, doi: 
10.1109/ISSCC19947.2020.9062984. 

[10] J. -S. Park et al., "A Multi-Mode 8k-MAC HW-Utilization-Aware 
Neural Processing Unit With a Unified Multi-Precision Datapath in 4-
nm Flagship Mobile SoC," in IEEE Journal of Solid-State Circuits, vol. 
58, no. 1, pp. 189-202, Jan. 2023, doi: 10.1109/JSSC.2022.3205713. 

[11] P. Houshmand et al., "DIANA: An End-to-End Hybrid DIgital and 
ANAlog Neural Network SoC for the Edge," in IEEE Journal of Solid-
State Circuits, vol. 58, no. 1, pp. 203-215, Jan. 2023, doi: 
10.1109/JSSC.2022.3214064. 

[12] F. Conti et al., "Marsellus: A Heterogeneous RISC-V AI-IoT End-
Node SoC With 2–8 b DNN Acceleration and 30%-Boost Adaptive 
Body Biasing," in IEEE Journal of Solid-State Circuits, vol. 59, no. 1, 
pp. 128-142, Jan. 2024, doi: 10.1109/JSSC.2023.3318301. 

[13] S. Kim et al., "DynaPlasia: An eDRAM In-Memory Computing-Based 
Reconfigurable Spatial Accelerator With Triple-Mode Cell," in IEEE 
Journal of Solid-State Circuits, vol. 59, no. 1, pp. 102-115, Jan. 2024, 
doi: 10.1109/JSSC.2023.3319962.  

[14] Bill Dally, “To ExaScale and Beyond,” SuperComputing 2010. 

[15] I. Miro-Panades et al., "A Multi-Application Platform Supporting 
Several Uses Cases in the Domains Digital Farming and Transport and 
Smart Mobility," European Conference on EDGE AI Technologies and 
Applications (EEAI), Oct. 2023 Athens, Greece. 

[16] https://www.cityscapes-dataset.com 

 


